3.4.32 \(\int \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\) [332]

3.4.32.1 Optimal result
3.4.32.2 Mathematica [A] (verified)
3.4.32.3 Rubi [A] (verified)
3.4.32.4 Maple [A] (verified)
3.4.32.5 Fricas [C] (verification not implemented)
3.4.32.6 Sympy [F]
3.4.32.7 Maxima [F]
3.4.32.8 Giac [F]
3.4.32.9 Mupad [F(-1)]

3.4.32.1 Optimal result

Integrand size = 25, antiderivative size = 131 \[ \int \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=-\frac {E\left (e+f x\left |-\frac {b}{a}\right .\right ) \sqrt {a+b \sin ^2(e+f x)}}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {a \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right ) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{f} \]

output
-(cos(f*x+e)^2)^(1/2)/cos(f*x+e)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*(a+b*s 
in(f*x+e)^2)^(1/2)/f/(1+b*sin(f*x+e)^2/a)^(1/2)+a*(cos(f*x+e)^2)^(1/2)/cos 
(f*x+e)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*(1+b*sin(f*x+e)^2/a)^(1/2)/f/(a 
+b*sin(f*x+e)^2)^(1/2)+(a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)/f
 
3.4.32.2 Mathematica [A] (verified)

Time = 0.80 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.02 \[ \int \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\frac {-2 a \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+2 a \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )+\sqrt {2} (2 a+b-b \cos (2 (e+f x))) \tan (e+f x)}{2 f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

input
Integrate[Sec[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2],x]
 
output
(-2*a*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + 
2*a*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + Sq 
rt[2]*(2*a + b - b*Cos[2*(e + f*x)])*Tan[e + f*x])/(2*f*Sqrt[2*a + b - b*C 
os[2*(e + f*x)]])
 
3.4.32.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.33, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3671, 314, 27, 389, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin (e+f x)^2}}{\cos (e+f x)^2}dx\)

\(\Big \downarrow \) 3671

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\left (1-\sin ^2(e+f x)\right )^{3/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 314

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}-\int \frac {b \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)\right )}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}-b \int \frac {\sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)\right )}{f}\)

\(\Big \downarrow \) 389

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}-b \left (\frac {\int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}-\frac {a \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b}\right )\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}-b \left (\frac {\int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}-\frac {a \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{b \sqrt {a+b \sin ^2(e+f x)}}\right )\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}-b \left (\frac {\int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}-\frac {a \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}\right )\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}-b \left (\frac {\sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}\right )\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{\sqrt {1-\sin ^2(e+f x)}}-b \left (\frac {\sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}\right )\right )}{f}\)

input
Int[Sec[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2],x]
 
output
(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*((Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]^ 
2])/Sqrt[1 - Sin[e + f*x]^2] - b*((EllipticE[ArcSin[Sin[e + f*x]], -(b/a)] 
*Sqrt[a + b*Sin[e + f*x]^2])/(b*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (a*Ellip 
ticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(b*Sqrt 
[a + b*Sin[e + f*x]^2]))))/f
 

3.4.32.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 314
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-x)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2*a*(p + 1))), x] + Simp[1/(2*a* 
(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 1)*Simp[c*(2*p + 3) + d 
*(2*(p + q + 1) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && LtQ[p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, 
 x]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 389
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[1/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] - Simp[a/b   Int 
[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && N 
eQ[b*c - a*d, 0] &&  !SimplerSqrtQ[-b/a, -d/c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3671
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff*(Sqrt[ 
Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a 
 + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] 
 && IntegerQ[m/2] &&  !IntegerQ[p]
 
3.4.32.4 Maple [A] (verified)

Time = 2.66 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.69

method result size
default \(\frac {\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )-\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, a E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )-\left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right ) b +a \sin \left (f x +e \right )+b \sin \left (f x +e \right )\right )}{\sqrt {-\left (a +b \left (\sin ^{2}\left (f x +e \right )\right )\right ) \left (\sin \left (f x +e \right )-1\right ) \left (1+\sin \left (f x +e \right )\right )}\, \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(222\)

input
int(sec(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(a*(cos(f*x+e)^2)^(1/2)*(-b/a*c 
os(f*x+e)^2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))-(cos(f*x+e 
)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*a*EllipticE(sin(f*x+e),(-1/a* 
b)^(1/2))-cos(f*x+e)^2*sin(f*x+e)*b+a*sin(f*x+e)+b*sin(f*x+e))/(-(a+b*sin( 
f*x+e)^2)*(sin(f*x+e)-1)*(1+sin(f*x+e)))^(1/2)/cos(f*x+e)/(a+b*sin(f*x+e)^ 
2)^(1/2)/f
 
3.4.32.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 640, normalized size of antiderivative = 4.89 \[ \int \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=-\frac {-4 i \, \sqrt {-b} b \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} \sqrt {\frac {a^{2} + a b}{b^{2}}} \cos \left (f x + e\right ) F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + 4 i \, \sqrt {-b} b \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} \sqrt {\frac {a^{2} + a b}{b^{2}}} \cos \left (f x + e\right ) F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + {\left (2 i \, \sqrt {-b} b \sqrt {\frac {a^{2} + a b}{b^{2}}} \cos \left (f x + e\right ) + {\left (2 i \, a + i \, b\right )} \sqrt {-b} \cos \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + {\left (-2 i \, \sqrt {-b} b \sqrt {\frac {a^{2} + a b}{b^{2}}} \cos \left (f x + e\right ) + {\left (-2 i \, a - i \, b\right )} \sqrt {-b} \cos \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) - 2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} b \sin \left (f x + e\right )}{2 \, b f \cos \left (f x + e\right )} \]

input
integrate(sec(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
-1/2*(-4*I*sqrt(-b)*b*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*sqrt(( 
a^2 + a*b)/b^2)*cos(f*x + e)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/ 
b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 
- 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) + 4*I*sqrt(-b)*b*sqrt((2*b*s 
qrt((a^2 + a*b)/b^2) + 2*a + b)/b)*sqrt((a^2 + a*b)/b^2)*cos(f*x + e)*elli 
ptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) 
- I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b 
)/b^2))/b^2) + (2*I*sqrt(-b)*b*sqrt((a^2 + a*b)/b^2)*cos(f*x + e) + (2*I*a 
 + I*b)*sqrt(-b)*cos(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/ 
b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f* 
x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^ 
2 + a*b)/b^2))/b^2) + (-2*I*sqrt(-b)*b*sqrt((a^2 + a*b)/b^2)*cos(f*x + e) 
+ (-2*I*a - I*b)*sqrt(-b)*cos(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 
2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b 
)*(cos(f*x + e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2) 
*sqrt((a^2 + a*b)/b^2))/b^2) - 2*sqrt(-b*cos(f*x + e)^2 + a + b)*b*sin(f*x 
 + e))/(b*f*cos(f*x + e))
 
3.4.32.6 Sympy [F]

\[ \int \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int \sqrt {a + b \sin ^{2}{\left (e + f x \right )}} \sec ^{2}{\left (e + f x \right )}\, dx \]

input
integrate(sec(f*x+e)**2*(a+b*sin(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*sin(e + f*x)**2)*sec(e + f*x)**2, x)
 
3.4.32.7 Maxima [F]

\[ \int \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \sec \left (f x + e\right )^{2} \,d x } \]

input
integrate(sec(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*sin(f*x + e)^2 + a)*sec(f*x + e)^2, x)
 
3.4.32.8 Giac [F]

\[ \int \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \sec \left (f x + e\right )^{2} \,d x } \]

input
integrate(sec(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*sin(f*x + e)^2 + a)*sec(f*x + e)^2, x)
 
3.4.32.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int \frac {\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}}{{\cos \left (e+f\,x\right )}^2} \,d x \]

input
int((a + b*sin(e + f*x)^2)^(1/2)/cos(e + f*x)^2,x)
 
output
int((a + b*sin(e + f*x)^2)^(1/2)/cos(e + f*x)^2, x)